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1. Random variables 

a. Random variables:  X, Y, Z … take on different values with different probabilities; 
convention is to use capital letters for random variables and lower case letters for realized 
values  

i. So, for instance, X is a random variable, and x or 1 2 3, ,x x and x  would be specific 
realized values of X 

b. (Probability) Density functions (pdfs):  describe the distribution of the random variable 
…  the probability that the random variable takes on different values… used to determine 
probabilities 

i. Discrete random variable (e.g. Binomial distribution):  takes on a finite or countably 
infinite set of values with positive probability 

1. density function:  ( ) ( ) 0 ( ) 1j j jf x P X x and f x= = ≥ =∑   (note sigma notation) 

ii. Continuous random variable (e.g. Normal distribution) 

1. density function:  ( ) 0 ( ) 1f x and f x dx≥ =∫  

iii. Use the density functions to determine the probabilities: 

1. Discrete:  ( ) ( ) ( )
a x b a x b

P a X b P X x f x
< ≤ < ≤

< ≤ = = =∑ ∑  

2. Continuous:  ( ) ( )
b

a
P a X b f x dx< ≤ = ∫  
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c. Examples of random variables 

i. Uniform [a,b]:  1( ) [ , ]f x x a b
b a

= ∈
−

and is 0 otherwise 

ii. Standard Normal - N(0,1): 
21

21( )
2

x
f x e

π

−
=  

 
2. Measures of central tendencies and variability 

a. Expectation/Mean (measure of central tendency):  ( ),E X µ  

i. The average value of X (observed with a large number of random samples from the 
distribution) 

ii. A weighted average of the different values of X (weight the values by their respective 
probabilities) 

1. Discrete:  ( ) ( ) ( )i i i iE X x P X x x f xµ= = = =∑ ∑  

2. Continuous:  ( ) ( )E X xf x dxµ= =∫  

iii. Properties 

1. Linear operator:  ( ) ( )E aX b aE X b+ = +  

a. Extends to many random variables:  

( ) ( ) ( )i i i i i i i iE a X E a X a E X a µ= = =∑ ∑ ∑ ∑  

2. And for some function g(.), ( ( )) ( ) ( )i iE g X g x f x= ∑  or ( ) ( )g x f x dx∫  for a 
continuous distribution 

b. Variance (measure of variability or dispersion around the mean): 2( ),Var X σ  

i. The average squared deviation of X from its mean (observed with a large number of 
random samples from the distribution) 

ii. A weighted average of the different squared deviations of X from its mean (weight 
the squared deviations by their respective probabilities) 

1. Discrete:  ( ) ( )2 22( ) ( ) ( ) ( )i i i iVar X E X x P X x x f xµ µ µ= − = − = = −∑ ∑  

2. Continuous:  ( )22( ) ( ) ( )Var X E X x f x dxµ µ= − = −∫  

3. 2 2 2 2( ) ( )E X E Xσ µ µ= − = −  

iii. Properties: 

1. Not a linear operator:  2( ) ( )Var aX b a Var X+ =  

iv. Standard deviation (StdDev):  2σ σ=  … (positive square root) 



Review of Random Variables and Distributions 
 

3 
 

1. Linear operator:  if a>0, then  
2( ) ( ) ( ) ( )StdDev aX b Var aX a Var X a StdDev X+ = = =  

c. Standardizing random variables (z-scores):  XZ µ
σ
−

=  (has mean zero and unit 

variance) 

i. Mean:  ( )1( ) ( ) 0XE Z E E Xµ µ
σ σ
− = = − = 

 
 

ii. Variance:  2
2

1( ) ( ) ( ) 1Var Z E Z Var X
σ

= = =  

 
3. Joint density functions 

a. Consider X and Y, two random variables  (e.g.  people are randomly drawn from a 
population and their heights and weights are recorded) 

b. If discrete, then the joint density is defined by ( , ) ( & )XYf x y P X x Y y= = =  

c. Note that ( ) ( ) ( & ) ( , )X XY
y y

P X x f x P X x Y y f x y= = = = = =∑ ∑ . 

i. So, the marginal density ( ) ( )XP X x f x= =  is the sum over the joint densities 
( , )XY

y
f x y∑  . 

d. Here’s an example.   

i. In the following table, the random variable X takes on three values (x1, x2 and x3), 
and Y takes on two (y1 and y2).  The figures in the XY box are the joint probabilities, 

( , ) ( & )XYf x y P X x Y y= = = .  And so, for example, 
( 1, 1) ( 1 & 1) .2XYf x y P X x Y y= = = = .   

ii. And the marginal probabilities can be recovered from the joint probabilities by just 
summing across the rows and columns.  So, for example, 

1,2
( 1) ( 1) ( 1 & )X

j
P X x f x P X x Y yj

=

= = = = =∑  

( 1, 1) ( 1, 2) .2 .2 .4XY XYf x y f x y= + = + = . 

y1 y2
x1 0.2 0.2 0.4 P(X=x1)

X x2 0.1 0.3 0.4 P(X=x2)
x3 0.1 0.1 0.2 P(X=x3)

0.4 0.6
P(Y=y1) P(Y=y2)

Y
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e. Independence 

i. , ( , ) ( ) ( ) ( ) ( )X Y X Yf x y P X x P Y y f x f y= = = =   for all values of X and Y, (x,y) … the 
joint density function is the product of the marginal densities  (applies to discrete and 
continuous distributions) 

1. X and Y in the previous example are not independent, since, for example: 

 ( )( ), ( 1, 1) .2 ( 1) ( 1) ( 1) ( 1) .4 .4 .16X Y X Yf x y P X x P Y y f x f y= ≠ = = = = =  

ii. We can extend to many independent random variables: 

1 2, , , 1 2 1 1 2 2( , , , ) ( , , , )
nX X X n n nf x x x P X x X x X x= = = =



 

1 21 2 1
( ) ( ) ( ) ( )

n i

n
X X X n X ii

f x f x f x f x
=

= =∏  

iii. Not independent means dependent 
 
4. Measures of association  

a. Consider two random variables, X and Y. 

b. Covariance:  ( , ) ( )( ) ( )( ) ( , )XY X Y X YCov X Y E X Y x y f x yσ µ µ µ µ= = − − = − −∑  

c. Some examples:  X and Y both have mean 0 in the following examples.  On the left, most 
of the data are in quadrants I and III, where ( )( ) 0X Yx yµ µ− − > , and so when you sum 
those products you get a positive covariance.  Most of the action on the right is in 
quadrants II and IV where ( )( ) 0X Yx yµ µ− − < , and so those products sum to a negative 
covariance. 

 

   
 

d. Properties: 

i. ( , ) ( )XY X YCov X Y E XYσ µ µ= = −  

ii. Note that 2( , ) ( )( ) ( )XX X X XCov X X E X X Var Xσ µ µ σ= = − − = =  
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iii. Measures the extent to which there is a linear relationship between X and Y 

iv. If ( , ) 0Cov X Y >  then as illustrated above, X and Y tend to move together in a 
positive direction, so that increases is X are on average associated with increases in 
Y…  and if the covariance is negative, then they tend to move in opposite directions 

v. If  X and Y are independent, then ( , ) 0XYCov X Y σ= =  

1. Opposite need not hold… 0XYσ =  does not necessarily imply independence… it 
could just mean that there is a highly non-linear relationship between X and Y. 

2. Here’s an example of X & Y having zero covariance, but not being independent: 

 

0 1 0 1
-1 -     0.33   0.33   E(X)= -1 0.67        (0.33)   

X 0 0.33   -     0.33   0 0 -         -      
1 -     0.33   0.33   1 (0.67)      0.33    

0.33   0.67   Cov(X,Y) 0.0000
E(Y)= 0.67   

Joint & Marginal  Densities Cov Contributions
Y Y

 
 

vi. ( , ) ( , )Cov a bX c dY bdCov X Y+ + =  

vii. XY X Yσ σ σ≤    the magnitude of the covariance is never greater than the product of 
the magnitudes of the standard deviations (this is an instance of the Cauchy-Schwartz 
Inequality) 

e. Variances of sums of random variables 

i. 2 2( ) 2 ( , )X YVar X Y Cov X Yσ σ+ = + +  

ii. More generally:  
1 2

2 2 2 2
1 1 2 2 1 1 2 1 2 2( ) 2 ( , )X XVar a X a X a a a Cov X X aσ σ+ = + +  

iii. So if ( , ) 0Cov X Y =  (so that X and Y are uncorrelated), then 
( ) ( ) ( )Var X Y Var X Var Y+ = +  (the variance of the sum is the sum of the variances) 

iv. And even more generally: 

1. 
1 1 1

( , )
n n n

i i i j i j
i i j

Var a X a a Cov X X
= = =

 
= 

 
∑ ∑∑  … note that when i=j, the term is 

2 2 2( , )i i i i ia Cov X X a σ=  

2. If the iX ’s are pairwise uncorrelated, then ( , ) 0i jCov X X =  when i j≠ , and so in 

this case, 2 2

1 1 1 1 1
( , ) ( , )

n n n n n

i i i j i j i i i i i i
i i j i i

Var a X a a Cov X X a a Cov X X a σ
= = = = =

 
= = = 

 
∑ ∑∑ ∑ ∑  
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a. If they are pairwise uncorrelated, then the variance of the sum is the sum of 
the variances. 

f. Correlation:  ( , )( , )
( ) ( )

XY
XY

X Y

Cov X YCorr X Y
StdDev X StdDev Y

σ
ρ

σ σ
= = =  

i. 1 1XY
XY X Y

X Y

σ
σ σ σ

σ σ
≤ ⇒ − ≤ ≤  …  so 1 1XYρ− ≤ ≤  

ii. And similar to above: 

1. If ( , ) 0Cov X Y = , then 0XYρ = . 

2. If X and Y are independent, then they are uncorrelated and 0XYρ =  

3. XYρ  captures the extent to which there is a linear relationship between X and Y  
… which is similar to, though not the same as, the extent to which they move 
together 

4. If Y aX b= + , then ( , )( , )
( ) ( )XY

Cov X YCorr X Y
StdDev Y StdDev X

ρ= =   

( ) 1 1
| | | |X X

aVar X a or
a aσ σ

= = = −  …  

and so if X and Y are linearly related they have a correlation of +1 or -1. 

iii. Properties: 

1. 1 1 1 2 2 2 1 2( , ) ( , )Corr a X b a X b Corr X X+ + =  if 1 2 0a a > , and 1 2( , )Corr X X= −  if 

1 2 0a a <  

2. So linear transformations of random variables may affect the sign of the 
correlation, but not the magnitude. 

 
5. Interesting result 

a. Suppose that the random variable Y is a linear function of another random variable X 
plus an additive random error U, which is uncorrelated with X, then: 

i. Y a bX U= + + , where ,Y X and U  are all random variables and ( , ) 0Cov X U =  

ii. ( , ) ( , ) ( , ) ( , ) ( , )Cov X Y Cov X a bX U Cov X a bCov X X Cov X U= + + = + +  

iii. Since ( , ) ( , ) 0Cov X a Cov X U= = , ( , ) ( , )Cov X Y bCov X X=  

iv. …  or ( , ) ( )( , )
( , ) ( )

XY XY Y Y
XY

XX X Y X X

Cov X Y StdDev Yb Corr X Y
Cov X X StdDev X

σ σ σ σρ
σ σ σ σ σ

= = = = =   

1. This is a relationship that will haunt you throughout the semester. 
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6. Conditional distributions 

a. Recall the definition of conditional probabilities:  ( )( | )
( )

P A BP A B
P B

=
 , which might 

suggest that ( & )( | )
( )

P Y y X xP Y y X x
P X x
= =

= = =
=

 

b. If discrete, then ,
|

( , )
( | ) ( | )

( )
X Y

Y X
X

f x y
f y x P Y y X x

f x
= = = =  … same formula applies to 

continuous distributions 

i. Dividing by ( )Xf x  effectively “scales up” the marginal densities…. and ensures that 
you have a valid density function, since 

,
| ,

( , ) ( )1( | ) ( , ) 1
( ) ( ) ( )

X Y X
Y X X Y

X X X

f x y f xf y x dy dy f x y dy
f x f x f x

= = = =∫ ∫ ∫ . 

c. If X and Y are independent then the conditional distributions and marginal distributions 
are the same  

i. | |( | ) ( ) ( | ) ( )Y X Y X Y Xf y x f y and f x y f x= = =  

ii. In words:  If X and Y are independent than knowing the particular value of Y, y, tells 
you nothing new about X, and vice-versa 

d. Conditional expectations and variances 

i. The expected value of Y conditional on X being a certain value… as the value of X 
changes, the conditional expectation of Y given X=x may also change 

1. |( | ) ( | ) ( | ) ( | )j j j Y X jE Y X x E Y x y P Y y X x y f y x= = = = = =∑ ∑  

2. If X and Y are independent, then ( | ) ( )E Y X x E Y= =  … knowing the value of X 
doesn’t change the expected value of Y 

ii. Conditional variances are similarly defined… the expected squared deviation from 
the conditional mean: 

1. [ ] ( )2 22( | ) ( ( | ) | ) ( | ) ( | )Var Y X x E Y E Y X x X x E Y x E Y x= = − = = = −  
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7. Law of Iterated Expectations 

a. [ ] [ ]{ }|( , ) ( , ) |X Y xE g X Y E E g x Y x=  since 

i. [ ] ( )( , ) , ( & )
i j

i j i j
x y

E g X Y g x y P X x Y y= = =∑∑   and 

ii. [ ]{ } ( )| ( , ) | , ( | ) ( )
i j

X Y x i j j i i
x y

E E g x Y x g x y P Y y X x P X x
  = = = = 
  

∑ ∑   

( ) ( ), ( | ) ( ) , ( & )
i j i j

i j j i i i j i j
x y x y

g x y P Y y X x P X x g x y P X x Y y= = = = = = =∑∑ ∑∑  

b. This obviously holds for continuous random variables as well. 

c. Why this is so useful?   In many cases, we will show that [ ]| ( , ) |Y xE g x Y x k=  for some 
constant k….  so that conditional on x (or the x’s), the expected value of ( , )g x Y  is some 
constant k.  And because that expectation is always k, for any x, the overall expectation 
of ( , )g X Y  must be k as well:  [ ]( , )E g X Y k= . 

d. For example:  We will show that under certain assumptions, and conditional on the x’s, 
the OLS estimator is an unbiased estimator, so that it’s expectation, conditional on the 
x’s, is in the fact the true parameter value.  But since this holds for any set of x’s, it must 
also be true overall.  And so in this case, we can just say that the OLS estimator is an 
unbiased estimator, and drop the “conditional on the x’s”. 

 
8. The Normal distribution 

a. Standard Normal (Gaussian):  ( )2,µ σΝ  has mean µ  and variance 2σ  

b. If X is ( )2,µ σΝ , then XZ µ
σ
−

=  is ( )0,1Ν  (the Standard Normal distribution) 

c. Properties: 

i. If X is ( )2,µ σΝ  then ( )2 2,aX b a b aµ σ+ Ν +  

ii. If 1X  and 2X  are independent with the same distribution, ( )2,µ σΝ , then 
2

1 2 (2 , 2 )X X µ σ+ Ν  

1. This implies that ( ) 2
1 2

1 1( , )
2 2

X X µ σ+ Ν . 

iii. More generally, assume that n random variables ( 1 2, , nX X X ) are independently 
and identically distributed ( )2,µ σΝ , then 2( , )iX n nµ σΝ∑   and 

21 1( , )iX X
n n

µ σ= Ν∑  . 
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iv. 1
iX X

n
= ∑  is a specific form of the more general weighted average i iY Xα= ∑ , 

where 0 1iα≤ ≤  for all i and 1iα =∑ .   

1. Y will have mean i iα µ µ α µ= =∑ ∑   

2. … and variance 2 2 2 2
i iα σ σ α= =∑ ∑ , and will be Normally distributed. 

 

9. Appendix I - Correlation and Linear Relationships:  0 11 ( ) 1XY P Y Xρ β β= ⇔ = + =  

a. Linear implies a correlation of +1 or -1 

i. Suppose that 0 1Y Xβ β= +  and 1 0β ≠ . 

ii. Then 0 1 0 1 0 1cov( , ) cov( , ) (( )( ))X XX Y X X E X Xβ β µ β β β β µ= + = − + − −
2

1 1(( ) ) var( )XE X Xβ µ β= − = . 

iii. And since 2 2 2 2
0 1 0 1 1 1var( ) (( ) ) (( ) ) var( )X XY E X E X Xβ β β β µ β µ β= + − − = − = , the 

correlation of X and Y is: 
1 1

2 2
1 1

var( )cov( , ) 1 1
var( ) var( ) var( ) var( )

XY
XX Y or

X Y X X

β β
ρ

β β
= = = = + −  depending on the 

sign of 1 0β ≠ . 

b. Non-linear implies correlation not +1 or -1 … here’s an example: 

i. Suppose that 0 1( )U Y Xβ β= − + , where 0 cov( , ) 0U and X Uµ = = , but
2var( ) 0UU σ= ≠ (so we don’t have a perfectly linear relationship between X and Y). 

ii. Then 0 1 0 1 0 1cov( , ) cov( , ) (( )( ))X XX Y X X U E X X Uβ β µ β β β β µ= + + = − + + − −  . 

iii. And since 2
0 1 0 1var( ) (( ) )XY E X Uβ β β β µ= + + − −  

2 2
1 1(( ) ) 2 cov( , ) var( )XE X X U Uβ µ β= − + +  2 2

1 var( ) UXβ σ= + ,  the correlation of X 

and Y is: 
( )

1

2 2
1

var( )cov( , )
var( ) var( ) var( ) var( )

XY

U

XX Y
X Y X X

β
ρ

β σ
= =

+
. 

iv. Since 2var( ) 0UU σ= ≠ , the denominator will be larger in magnitude than the 
numerator and so 1XYρ < .   

v. Notice that if 2 0Uσ = , then we have a linear relationship, and as above 
1 1XY orρ = + − . 
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10. Appendix II:  Covariance and independence 

 
Not Independent! Independent!

marginal marg
0 0.25 1 for X 0 0.25 1

-1 0% 0% 20% 20% -1 4% 8% 8% 20%
-0.5 0% 20% 0% 20% -0.5 4% 8% 8% 20%

X 0 20% 0% 0% 20% X 0 4% 8% 8% 20%
0.5 0% 20% 0% 20% 0.5 4% 8% 8% 20%

1 0% 0% 20% 20% 1 4% 8% 8% 20%

marginal for Y
20% 40% 40% marg 20% 40% 40% Indep!

Covariance calculation
prob X Y

20% -1 1
20% -0.5 0.25
20% 0 0
20% 0.5 0.25
20% 1 1

mean 0 0.5
variance 0.625 0.2188
covariance 0 covar = 0

X-muX Y-muY product
-1 0.5 -0.5

-0.5 -0.25 0.125
0 -0.5 0

0.5 -0.25 -0.125
1 0.5 0.5

Y = X^2 Y

 


